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Abstract

We present here the computer program AUREMOL-RFAC-3D that is a generalization of the previously
published program RFAC for the fully automated estimation of residual indices (R-factors) from 2D
NOESY spectra. It is part of the larger AUREMOL software package (www.auremol.de). RFAC-3D
calculates R-factors directly from two-dimensional homonuclear NOESY spectra as well as from three-
dimensional 15N or 13C edited NOESY-HSQC spectra and thus extends the application range to larger
proteins. The fully automated method includes automated peak picking and integration, a Bayesian noise
and artifact recognition and the use of the complete relaxation matrix formalism. To enhance the reliability
of the calculated R-factors the method is also generalized to calculate combined R-factors from a set of 2D
and 3D-spectra. For an optimal combination of the information derived from different sources a plausible
formalism had to be derived. In addition, we present a novel direct R-factors based measure that correlates
an R-factors as defined in this paper to the root mean square deviation of the actual structure from the
optimal structure. The new program has been successfully tested on the histidine containing phosphocarrier
protein (HPr) from Staphylococcus carnosus and on the Ras-binding domain (RBD) of the Ral guanine-
nucleotide dissociation stimulation factor (RalGDS).

Abbreviations: HPr – histidine containing phosphocarrier protein; RalGDS-RBD – Ral guanine-nucleotide
dissociation stimulation factor; RBD – Ras-binding domain; HSQC – heteronuclear single quantum
coherence; NOE – nuclear Overhauser effect; NOESY – nuclear Overhauser effect spectroscopy; rmsd –
root mean square deviation.

Introduction

One of the most important points in any automated
or manual structure determination process of pro-
teins in solution is the assessment of the quality of the

resulting structures. As a final aim, one wants to
know if the solved structure really reflects the true
structure present in the natural environment of the
molecule of interest. The overall precision of aNMR
structure is usually expressed either as an average
pair wise root-mean-square deviation (RMSD) of
the coordinates of the selected ensemble of structures
or as an RMSD of the structures relative to the
mean coordinates of the ensemble.However,RMSD
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values are ameasure of the precision of the structures
in the ensemblebutnotnecessarily for their accuracy.
Anothermean to analyze a structure is the quality of
the geometrical properties of the molecule, e.g. the
comparison of bond lengths, bond angles, dihedral
angles etc., with standard values obtained for
example from a set of high resolution structures
(Laskowski et al., 1996). Alternatively, using a set of
previously solved three-dimensional structures one
can compute a force field consisting of potentials of
mean force. In this way, energy potentials for the
atomic interactions between the various amino acid
pairs are derived as a function of the distance
between the involved atoms. Employing such a force
field one can compute energy graphs for a given
structure to identify problematic regions as is done
within PROSA II (Sippl, 1993).

A better measure for the quality of a NMR
structure includes information how well the
obtained structures agree with the experimental
data. Often the overall quality of the experimental
data itself is simply judged by the number of
restraints per residue. Furthermore, the number
and sizes of violated restraints, such as distance,
dihedral angle, hydrogen bond, and residual dipo-
lar coupling restraints are analyzed in a qualitative
or quantitative way. R-factors (residual factor) are
used in crystallography (Brünger et al., 1987) for
the quantification of the agreement of the experi-
mental data with the calculated structure. A similar
measure can be defined for NMR data where
experimental NOESY spectra and NOESY spectra
back-calculated from a trial structure are com-
pared. In the literature different definitions for
NMR-R-factors can be found (Lefevre et al., 1987;
Gupta et al., 1988; Nikonowicz et al., 1990; Lane,
1990; Baleja et al., 1990; Borgias et al., 1990;
Borgias and James, 1990; Gonzalez et al., 1991;
Nilges et al., 1991; Bonvin et al., 1991; Thomas
et al., 1991; Mertz et al., 1991; Brünger et al., 1993;
Clore et al., 1993; Xu et al., 1995; Cullinan et al.,
1996).MostR-factors are calculated frommanually
edited distance or peak volume lists, however, they
can also derived in an automated way (Gronwald
et al., 2000).

Another important point in R-factor calcula-
tion is the consideration of unassigned or not
assignable experimental cross peaks. We defined
earlier (Gronwald et., 2000) that true experimental
NOE cross peaks should be assigned to the class of
unassigned signals (U-list) when in the trial struc-

ture the corresponding protons are further apart
than an user defined distance cutoff (e.g. 0.6 nm).
This class of unassigned signals is then handled
differently. The idea of using the presence or ab-
sence of simulated and experimental signals was
later also employed in the paper by Huang et al.
(2005) for the calculation of so called RPF scores.

In a previous publication (Gronwald et al.,
2000), we have described a method for automated
calculation of NMR-R-factors based on the use of
1H 2D NOESY spectra that is well suited for the
investigation of smaller molecules. However, for
larger proteins the use of 2D spectra becomes
usually prohibitive for NMR R-factor calculations
due to the presence of extensive overlap in the
experimental spectra. As a consequence we have
extended our routines for the automated NMR
R-factor calculation to the use of 15N or 13C edited
3D NOESY-HSQC spectra. In principle, the vali-
dation of a structure should include the set of all
relevant experimental data, e.g. all NOESY-type
spectra used in the structure determination. The
appropriate weighting of different spectra during
the R-factor calculation is a non-trivial problem,
which also has to be solved in this context.

One important point in any NMR R-factor
calculation that has not been solved satisfactorily
yet is the interpretation of the R-factor in geo-
metric terms. As a consequence we present in this
paper a clear relationship between R-factors
defined by us and rmsd values.

Our approach was tested on two medium size
proteins namely the histidine containing protein
(HPr) from Staphylococcus carnosus and the Ras-
binding domain (RBD) of the Ral guanine-nucle-
otide dissociation stimulation factor (RalGDS)
from human. The protein HPr is 88 residues in size
and its structure consists of three a-helices and a
four stranded anti parallel b-sheet (Görler et al.,
1999) while RalGDS-RBD is 87 residues in size
and displays the ubiquitin super-fold.

Materials and methods

NMR-samples

ForHPr the three-dimensional 15N editedNOESY-
HSQC spectrum used was recorded from a sample
of 3.1 mM 15N-labelled HPr from Staphylococcus
carnosus in 90%H2O/10%D2O (v/v), pH 7.2 while
for the homonuclear 1H 2D NOESY spectrum a
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sample containing 4.3 mM unlabelled HPr in 90%
H2O/10% D2O (v/v), pH 7.2 was used. For Ral-
GDS-RBD the corresponding spectra were mea-
sured from 15N-labeled and unlabeled samples
of 1.0 mM RalGDS-RBD in 90% H2O/10% D2O
(v/v), pH 7.0.

NMR spectroscopy

For HPr the three-dimensional NOESY-HSQC
spectrum and the 2D spectrum were recorded
at 500 MHz employing a mixing time of
100 ms and at 800 MHz with a mixing time of
150 ms, respectively. The 3D and 2D spectra were
acquired using relaxation delay (time between the
last p/2-pulse of the present and the first p/2-pulse
of the following NOESY sequence) of 1.1 and
2.37 s and 224� 112� 1024 and 1024� 8192 time
domain data points, respectively. For RalGDS-
RBD the three-dimensional NOESY-HSQC spec-
trum and the 2D spectrum were recorded at
600 MHz employing a mixing time of 100 ms and
at 800 MHz with a mixing time of 80 ms, respec-
tively. The 3D and 2D spectra were acquired using
relaxation delays of 1.59 and 1.56 s and
128� 64� 2048 and 512� 4096 time domain data
points, respectively. All spectra for both proteins
were measured at 298 K.

Three-dimensional structure

The corresponding three-dimensional solution
structure of HPr from S. carnosus (Görler et al.,
1999) was taken from the set of structures sub-
mitted to the PDB, accession code 1QR5. The
overall quality of the structure was further
improved by subjecting it to refinement in explicit
solvent (Nabuurs et al., 2004) using the same set of
structural restraints used before (Linge et al.,
2003). The solution structure of human RalGDS-
RBD (residues 1–97, corresponding to residues
788–884 of the full length protein, Swiss prot
accession code: Q12967) has previously been
published by Geyer et al. (1997). For the current
tests the structure of a shorter construct (amino
acid 11 to 97) has been recalculated from the
NMR data. Using AUREMOL (Gronwald and
Kalbitzer, 2004) the NOESY spectra were auto-
matically peak-picked employing locally adapted
thresholds. Separation of artifacts and noise from

true signals was accomplished using a Bayesian
analysis implemented in AUREMOL (Antz et al.,
1995; Schulte et al., 1997). In the next step, signals
are integrated using iterative segmentation (Geyer
et al., 1995). NOE signals were completely auto-
matically assigned using the KNOWNOE ap-
proach (Gronwald et al., 2002) implemented in
AUREMOL. KNOWNOE contains as a central
part a knowledge driven Bayesian algorithm for
solving ambiguities in NOE assignments arising
for example from chemical shift degeneracy. In
contrast to other known assignment algorithms
KNOWNOE uses volume probability distribu-
tions obtained from a large number of already
solved structures together with the individual cross
peak volumes to calculate the most probable
assignments. Accurate distance constraints were
obtained from the NOE spectra by using the full
relaxation matrix approach embedded in the
AUREMOL module RELAX (Görler and Kal-
bitzer, 1997; Görler et al., 1999; Ried et al., 2004)/
REFINE (to be published), taking also experi-
mentally determined order parameters S2 and
correlation times into account. Appropriate indi-
vidual error bounds were obtained by a local
analysis of noise levels and signal overlap and
expected order parameter variations. Six cycles of
iterative NOE assignments and structure calcula-
tions with CNS 1.1 (Brünger et al., 1998) using as
input an extended strand starting structure and the
sequential resonance assignment were performed
to obtain the final solution structures. These
structures were also subjected to refinement in
explicit solvent. The structure together with the
resonance line assignment has been deposited in
the protein data bank with the accession number
2B3A.

Software

The NMR data were processed with the program
XWINNMR� (Bruker). All other routines
required for R-factor calculation are contained in
the program AUREMOL (www.auremol.de).
AUREMOL is written in ANSI C and a compiled
version for PCs running under Microsoft WIN-
DOWS-NT� or higher can be obtained from the
above web page. Molecular dynamics simulations
were performed with the program CNS (Brünger
et al., 1998).
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Theoretical considerations and algorithms

In general, the R-factor (residual index) should
measure the agreement between the experimental
data set and the data back calculated from the
structure. The automated NMR R-factor analysis
using three-dimensional spectra follows in princi-
ple the strategy described previously (Gronwald
et al., 2000). Therefore, we will concentrate in the
following mainly on new extensions to that strat-
egy. All routines required are included in the newly
developed software package AUREMOL (Gron-
wald and Kalbitzer, 2004). The methods developed
for 2D-NOESY spectra have (1) to be extended to
3D-NOESY-HSQC spectra and (2) an appropriate
weighting algorithm has to be defined for com-
bining different types of 2D- and 3D-NOESY
spectra in a common R-factor.

Calculation of R-factors of 3D-spectra

As in the case of 2D-spectra in the first part, a three-
dimensional NOESY spectrum has to be back-
calculated from the three-dimensional trial struc-
ture using the resonance line assignments. In our
implementation we are employing the full relaxa-
tion matrix approach using the AUREMOL mod-
ule RELAX (Görler and Kalbitzer, 1997; Görler
et al., 1999; Ried et al., 2004) for back-calculating
a 3D NOESY spectrum which gives a list of
back calculated peaks (B-list) defined by their
positions and intensities (volumes). If required, in
AUREMOL it is also possible to correct the back-
calculated 3D NOESY intensities for losses exper-
imentally observed in the HSQC part of the 3D
NOESY-HSQC spectrum. The experimental three-
dimensional NOESY spectrum is automatically
peak picked and integrated. In addition, the prob-
abilities pi of the peaks i in the tree-dimensional
spectrum to be true NMR signals and not noise or
artifact peaks are calculated according to Bayes
theorem with a new routine of AUREMOL (to be
published), a generalization of the method already
published for 2D-spectra (Antz et al., 1995; Schulte
et al., 1997). The probability values pi provide a
measure how reliable the peaks i are. They are used
as weighting factors during the calculation of the
R-factors. The resulting list of unassigned experi-
mental peaks (U-list) consists of the peak positions,
the volumes Vi and the probability values pi. Using
the backcalculated B-signals the yet unassigned

experimental signals are automatically assigned
with the new AUREMOL module PeakAssign (to
be published). In the first step, the program opti-
mally adapts the chemical shift values obtained
from the general sequential resonance assignment
to the actual experimental data. In the second step,
the peak assignment itself is done on local peak
clusters. For each back calculated peak a search is
performed if a corresponding experimental peak
exists in a given search radius. The assigned exper-
imental peaks are assembled in the A-list. In Peak-
Assign, the obtained assignment is dependent on
the structure under investigation since only cross
peaks are considered where a significant volume is
back calculated (i.e. where the contributing atoms
are within a given distance limit). In case that more
than one signal is back calculated at the same
position it can be assumed that the corresponding
experimental signal also consists of the sum of
several NOEs. Therefore, different to our earlier
implementation (Gronwald et al., 2000), in this
case the volumes of the overlapping simulated sig-
nals will be summed before R-factor calculation.

The remaining U-list contains two types of
cross peaks, cross peaks where in principle an
assignment is possible since its two (2D-NOESY)
or three (3D-NOESY) frequency coordinates cor-
respond to known resonance frequencies (U1-list)
and peaks where not all resonance frequencies
correspond to known resonance frequencies (U2-
list). For the signals from the U1-list an experi-
mental peak exists but no corresponding simulated
signal was calculated since the distance between
the contributing atoms in the trial structure ex-
ceeds the threshold value where the corresponding
simulated signal volume is in good approximation
equal to zero. Therefore, the experimental signals
from the U1-list are strong indicators of structural
problems. The U2-list contains peaks where at least
one of the spins contributing to an experimental
cross peak has not yet been assigned (incomplete
resonance line assignments) and peaks which are
either pure spectral artifacts, signals from other
compounds (e.g. buffer) or do not represent the
main conformation of the protein. The B-, A-, and
U1-signals are automatically read in by the
AUREMOL module RFAC-3D. We have pro-
posed previously a number of different R-factors
(Gronwald et al., 2000). Here, two of our previ-
ously published R-factors are shown, the PWAR
(probability-weighted assigned resonances based
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R-factor) and the PWAUR R-factor (probability-
weighted assigned and unassigned resonances
based R-factor) corresponding to the earlier pub-
lished R-factors R3 and R5, respectively (Gron-
wald et al., 2000). They are defined as:

RPWARðaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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and

Here, sfa is a scaling factor, Vexp,i is the volume of
the cross peak i in the experimental spectrum,
Vcalc,i the sum of back calculated volumes corre-
sponding to cross peak i, pexp,i the signal proba-

bility of the experimental peak i and a an exponent
(usually set to )1/6). In Equation 2, we addition-
ally take the experimental signals of the list U1 into
account. As explained above these are signals
where no corresponding simulated signal is avail-
able. In Equation 2, all signals of the list U1 are
compared to a standard noise volume Vnoise that
corresponds to the volume of an experimental
signal at the detection limit to substitute for the
missing corresponding simulated volumes. By also
using Vnoise in the denominator it is ensured that
RPWAUR approaches a value of 1 for completely
erroneous structures. For this contribution, a new
R-factor definition has been developed where
additionally the signals of the list U1 are now as-
signed. These assignments are based on chemical
shifts and in case of ambiguity the assignment
corresponding to the shortest distance in the
given structure is chosen. Since the corresponding

simulated volumes are all approximately zero, the
matching distances dPDB;i ¼ V

�1=6
sim;i are taken

instead from the trial structures and are used
directly in RPWFAR (probability-weighted full res-
onance assignment based R-factor) as defined in
Equation 3. As a consequence RPWFAR is in some
respect similar to RPWAR (Equation 1) using an
infinite distance cutoff value for signal simulation.
Additionally RPWFAR is not limited to maximum
values of 1 but might adopt significantly larger
values depending on the size and quality of the
used structure. In RPWFAR signals of the U1-list
that correspond to large distances in the given trial

structure will therefore have a significant impact
on the resulting R-factor. In comparison, in
RPWAUR (Equation 2) the influence of these signals
is limited by the application of the Vnoise term

The R-factor definitions given by Equations
1–3 provide a measure how well the experimental
signals are explained by a given test structure. It is
also possible to define an R-factor that addition-
ally analyzes how well the simulated signals are
explained by the given experimental spectrum
(Equation 4). This R-factor definition has the
advantage of the large statistical basis used.
Therefore, the influence of a single signal with an
erroneous volume due to for example base-line roll
should be minimal

The last term inRPWFASR (probability-weighted
full resonance assignment plus simulated signals
based R-factor) takes the simulated signals into
account for which no corresponding experimental
signals were available (UC-list). Please note that in
principle for each simulated signal an experimental
signal should be present; however, due to a finite
signal to noise ratio in the experimental spectra not
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i2A
ðsfaVa

exp;i � Va
calc;iÞ

2p2exp;i þ
P

i2U1

ðsfaV a
exp;i � V a

noiseÞ
2p2exp;i

P

i2A
sf 2aV

2a
exp;i p

2
exp;i þ

P

i2U1

ðsfaVa
exp;i � V a

noiseÞ
2p2exp;i

v

u

u

u

u

t

ð2Þ

RPWFARðaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i2A
ðsfaV a

exp;i � V a
calc;iÞ

2p2exp;i þ
P

i2U1

ðsfaV a
exp;i � d�6aPDB;iÞ

2p2exp;i
P

i2A
sf 2aV

2a
exp;ip

2
exp;i þ

P

i2U1

sf 2aV
2a
exp;ip

2
exp;i

v

u

u

u

u

t

ð3Þ

19



all of these can be detected. As a consequence we
only use signals of the UC-list where the simulated
volumes are above the detection limit of the cor-
responding experimental spectrum. In this context,
the term V

�1=6
noise c specifies the distance limit above

which the fraction of the number of experimental
signals to the number of simulated signals of the
same distance class substantially decreases.

In NMR spectroscopy and X-ray crystallogra-
phy, one has to normalize the experimental (or
calculated) data by a scaling factor sf. While in the
previous versions of this R-factor the scaling
procedure was applied to the calculated signals it is
now performed at the experimental signals of class
A to allow a comparable normalization of different
data sets (see below). As a consequence the cal-
culation of the definition of scaling factor sfa has
to be changed as well. We also include the prob-
abilities pexp,i in the calculation of the scale factor
(Equation 5). This should help to diminish the
influence of artifacts present in the experimental
spectra on the obtained scale factor

sfa ¼

P

i2A
pexp;iðVexp;iVcalc;iÞa

P

i2A
pexp;iV

2a
exp;i

ð5Þ

Definition of a combined R-factor

One important issue that arises when calculating
R-factors from a set of spectra, like for example
from two 2D spectra measured in H2O and D2O,
respectively, and a 15N edited NOESY-HSQC
spectrum is how to combine the corresponding
R-factors into one value that allows to judge the
obtained three-dimensional structure. From the
theoretical point of view this is not trivial since
the scaling of the different spectra and their
information content is usually different and has to
enter implicitly into the definition of the combined
R-factor. In general the combined R-factor Rcomb

should present a reliable measure how well all
available experimental data are explained by the
proposed structure(s). A general theory for the
derivation of a combined R-factor has not been
proposed yet in the literature, however, one can
find at least some plausible criteria which have to
be fulfilled by Rcomb. It is clear that the simple
averaging of the M R-factors calculated selectively
from the M spectra available does not provide a
meaningful solution of the problem since a spec-
trum containing only 1 signal would influence the
R-factor equally as a complete NOESY spectrum.
From that it is evident that in some way the
number of events (signals) has to influence the
weight of the different R-factors Rj of the spectra j.
In addition, a different scaling of the experimental
spectra (e.g. due to different receiver gains) should
not influence the calculation of the combined
R-factor. When only NOESY-type spectra are
combined, the influence of the experimental con-
ditions can be partly removed when the experi-
mental data are scaled to the back calculated
NOESY data as defined in Equation 5. In case of a
combination of two- and three-dimensional data
one has to define for the back calculation a com-
mon intensity basis that is one has to use in the
3D-spectra volumes reduced to the three-dimen-
sional space (the volumes in a 3D-spectrum are
calculated in a four-dimensional space since the
intensity is the fourth coordinate). This means that
in the simplest case only the corresponding two-
dimensional spectrum is calculated (as it is done
usually). In the more general case where the
HSQC-transfer efficiency varies for different cross
peaks one can correct the volumes by the transfer
efficiencies with full transfer efficiency set to 1.

A plausible criterion for the calculation of a
combined R-factor can be derived from the
Gedanken experiment that two regions of a nor-
mal 2D or 3D spectrum are recorded in two dif-
ferent experiments with different receiver gains.
Here, it is evident that the combined R-factor

RPWFASRðaÞ ¼
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should be equal to the R-factor obtained when the
complete spectrum has been recorded and used for
the calculation. With the assumption that the
scaling factors calculated with Equation 5 provide
sufficiently good approximations of true scaling
factors (obtained when the number of peaks is very
large), the combined R-factor Rcomb is given by

Rcomb¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where each contributing R-factor Rj is weighted
according to the experimental volumes Va

exp;i

scaled with the scaling factors sfj together with
their peak probability values pi of the Nj peaks in
the spectra j.

Dependence of the R-factor on the accuracy of the
3D-structure

The R-factor should be a measure for the quality of
a structure that is how closely the actual structure
represents the true protein structure. The ‘‘true’’
structure (or better the set S0 of true structures S0

i )
is generally not known, but only the set S1 of the
structures S1

i optimally fulfilling the given set of
experimental restraints Re and of restraints from a
priori knowledge Rp. When we define a measure F
(a metric) for the distance of the actual structure Sj

i

from the set S0 than the R-factor ideally should
increase when the value of F increases. Under ideal
conditions, that is the experimental restraints are
error-free and the optimization procedure (in our
case the simulated annealing procedure) finds only
solutions that optimally fulfill the restraints, the
structures of set S0 should be contained in set S1.
Sets of structures with larger mean values of F
should be obtained when the set of experimental
restraintsRe is reduced. An operative way to obtain
structures Si which larger F(S0, S

i) would be an
unrestrained molecular dynamics run in vacuo
starting with structures of set S1 and selecting
structures with increasing distance F(S1, Si).
Although this procedure does not grant that the
condition F(S0, Si) > F(S0, S1

i) is fulfilled it is
likely to hold for a single structure Si and should

hold for the first moment of the set of structures
created in this way.

A possible way to determine the metric F would
be the pairwise RMSD value of the Cartesian
coordinates of the heavy atoms of the test struc-
tures to the set of target structures. Since this
metric can be calculated easily, it will be used in
this paper. However, it is clearly not the only
possible definition of such a metric.

Results

Calculation of R-factors from 2D and 3D-NOESY
spectra and their combination

2D-NOESY and 3D-NOESY-HSQC spectra from
two small proteins, the Ras-binding domain of
RalGDS-RBD and the HPr protein were used to
calculate R-factors. Several different R-factor defi-
nitions are possible (see Gronwald et al., 2000).
Exemplarily, the R-factor Rpwaur with a = )1/6
defined by Equation 2 was used that is especially
well-suited to judge the quality of the three-dimen-
sional structure (see below). In addition a new
R-factor RPWFAR defined by Equation 3 is em-
ployed where the signals of the U1-list are assigned
based on chemical shifts and the corresponding
distances dPDB;i ¼ V

�1=6
calc;i are taken directly from the

trial structure. The R-factor calculation method
implemented in AUREMOL works directly on the
spectra with aminimum interference of the user and
includes automated peak picking, automated
integration, automated signal and artifact recogni-
tion, and automated back calculation of the
NOESY spectra. However, a few default parame-
ters can be selected and modified. An important
parameter is the signal probability. Here only peaks
with a considerable probability pi to be true
signals with pi>0.8 were taken, although the
inclusion of the probability reduces already auto-
matically the effect of pure artifact peaks in the
obtained R-factor. The default value of 0.55 nm
was accepted as detection limit that determines the
assignment to class A or U1.

The obtained values are summarized in
Table 1. As to be demanded the selection of the
type of NOESY spectra used for the calculation
does not influence significantly the R-factor
calculation, although the number N of peaks

21



contributing to the calculation differs consider-
ably. This is also true for the combined R-factor.

Calculation of the R-factors and the influence
of motional models

For each test protein a 3D 15N edited NOESY-
HSQC spectrum and a 2D 1H NOESY spectrum
were taken for the R-factor calculations. A strip
transformation (11.82–5.66 ppm forHPr and 10.00–
6.2 ppm for RalGDS-RBD) in the acquisition do-
main of the 3D spectra was performed to exclude
signal free regions and the strongwater artifacts. For
reasonsof comparison, a similar regionwas taken for
the analysis in the 2D spectra. Signals were auto-
matically identified with the routines integrated
within AUREMOL. True protein signals were sep-
arated from noise and artifacts using Bayesian
analysis and employing aBayesian cutoff value of 0.8
for all spectra leading for HPr to 507 and 842
experimental signals in the 3D and 2D spectra,
respectively. For RalGDS-RBD 450 signals were
identified in the 3D spectrumwhile 1008 signals were
obtained for the 2D data set. The difference in the
number of identified signals between the 2D and 3D
spectra reflectsmainly the increased sensitivity of the
2D spectra measured at 800 MHz and the fact that
the region corresponding to the aromatic signals is
not present in the 3D spectra. As described in the
algorithm section an automated structure based
assignment was performed with these signals.

For the simulations necessary for the calcula-
tion of the R-factors the same parameters, e.g.
relaxation delay between scans, mixing time etc.,
that were described for the corresponding experi-
mental spectra were used. The global correlation

times sc = 5.62 ns for HPr (Schubel et al., to be
published) and sc = 6.66 ns for RalGDS-RBD
(Döker et al., to be published) that were used in
the simulations were obtained from relaxation
measurements performed on uniformly 15N en-
riched samples at 298 K. From the possible spec-
tral densities as defined in Görler and Kalbitzer
(1997) LIPARI_1, which is a simplification of the
original spectral density defined by Lipari and
Szabo (Lipari and Szabo, 1982a, b) was selected
for all atom pairs not including a methyl group or
an aromatic ring. For all atom pairs containing
protons from a methyl group a fast-jump
approximation was used for the spectral density.
For atom pairs containing members from aro-
matic rings a slow jump approximation was made
for the spectral density. For all atom pairs con-
taining only backbone atoms an average order
parameter S2 of 0.95 has been experimentally
determined for HPr (Schubel et al., to be pub-
lished) while for the backbone atoms of RalGDS-
RBD in regular secondary structure elements and
loop regions S2 values of 0.96 and 0.74 were
determined, respectively. For all atom pairs con-
taining side-chain and main-chain atoms an S2 of
0.80 was used while for side-chain side-chain
interaction an S2 value of 0.65 was used. The latter
two values were not experimentally determined but
taken from the literature (Brünger, 1993). Also it is
possible to automatically correct for deviations of
the molecule from spherical shape. However, in
case this option is activated, in the current version
of RELAX the molecule is treated as a rigid body
and since the three-dimensional structures of HPr
and RalGDS-RBD can be approximated fairly

Table 1. R-factors calculated from 2D- and 3D-NOESY-spectra and their combinationa

Protein R-factor from

Nb 2D-NOESY Nb 3D-NOESY-HSQC Nb Combined

RalGDS-RBD RPWAUR 291 0.26 117 0.30 408 0.27

RPWFAR 972 0.47 432 0.56 1404 0.50

HPr RPWAUR 195 0.31 74 0.32 269 0.31

RPWFAR 828 0.50 458 0.45 1286 0.48

aR-factors RPWAUR and RPWFAR (a = )1/6) were calculated for the final solution structures of RalGDS-RBD and HPr. Only peaks
with a signal probability pi>0.8 and with chemical shifts between 11.82 and 5.66 ppm in d2 dimension (2D-NOESY) and d3 dimension
(3D-NOESY) were used. The detection limit defining the U1-list was set to 0.55 nm. For RPWAUR the A-list contains only signals from
amino acids separated by more than four amino acids in the sequence, while for RPWFAR all assigned signals of the A- and U1-list were
used. bNumber of signals used for the calculation.
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well with a sphere this option was not used for the
tests shown.

There are many factors besides the quality of
the obtained structure that can influence the
absolute value of the R-factor with a given set of
experimental restraints Re. Most important is the
definition of the R-factor itself. In addition, the
simulation of the spectra itself enters the calcula-
tion. Even with the use of the full relaxation matrix
formalism the choice of the motional model may
influence the result considerably. To test this
influence on the calculated R-factors a detailed
motional models was compared to an all rigid
model with no internal motions. For this test the
HPr protein was selected. Of the set of water
refined HPr structures the lowest energy structure
in terms of total energy was selected to automati-
cally assign the 2D NOESY spectrum of HPr.
Using the all rigid model and RPWAR (a = )1/6)
(Equation 1) for example for the medium-range
signals an R-factor of 0.28 was obtained, while
when using detailed motional models the corre-
sponding R-factor decreased to a value of 0.25
(Table 2). As to be expected, in general the more
detailed motional model gives slightly smaller
R-factors. However, quantitatively the difference is
not very large.

Creation of a set of trial structures

A set of trial structures Si with increasing distance
F(S1, S

i) to the initial structural set S1 was created
for both proteins used in this study, the HPr
protein and RalGDS-RBD by the simulated
annealing procedure described above. The final
lowest energy NMR structures in terms of total
energy of these two proteins were subjected
to 10000 5 fs steps of unrestrained molecular
dynamics simulations in vacuo at room tempera-
ture to obtain trajectories of increasingly

disordered structures where every 100 steps a 3D
structure was saved. For this purpose again CNS
1.1 with the corresponding CNS force field was
employed. The same standard simulated annealing
protocol that was used for generating the original
NMR trial structures was also used. The only
exception was the removal of all experimental
restraints and that the calculations were performed
in Cartesian space instead of torsion angle space.
Electrostatic terms were not used in decoy crea-
tion. The sets of resulting structures were ordered
with respect of the corresponding rmsd values to
the final solution structures. Of these structures for
each test-protein 16 structures were selected for
NMR R-factor calculation to cover the whole
range between the original solution structures and
almost totally disordered structures (Table 3).
These structures define the decoy set 1.

Also, to investigate the influence of decoy
generation on the resulting R-factors an additional
method for obtaining increasingly disordered
structures was used for RalGDS-RBD. In this
case, restraints from the original NOE distance
restraint list were randomly deleted and new
structures were calculated using the reduced re-
straint lists. Reduced restraint lists contained
approximately 90%, 80%, 70%, 60%, 50%, 40%,
30%, 20% and 10% of the original data. Using the
reduced distance restraint lists and no additional
experimental data 50 structures were calculated
from each restraint list of which in each case the
best in terms of total energy was selected for fur-
ther analysis (Table 4) defining decoy set 2.

Relation of the R-factors to the quality of the
structure

Figures 1 and 2 show for HPr and RalGDS-RBD,
respectively, the correlation between obtained
NMR R-factors and rmsd differences to the

Table 2. The influence of the motional modela

Type of motional model RPWAUR
b Intra-residualc Sequentialc Medium-rangec Long-rangec Inter-residualc

Rigid 0.35 0.13 0.14 0.28 0.20 0.19

Detailed 0.35 0.13 0.14 0.25 0.20 0.18

aThe set of 10 final HPr solution structures was selected for R-factor calculation together with the corresponding 2D NOESY
spectrum. bR-factors were calculated using RPWAUR (a = )1/6) (Equation 2). For RPWAUR the A-list contains only signals from amino
acids separated by more than four amino acids in the sequence. cR-factors were calculated using RPWAR (a = )1/6) (Equation 1).
Separate R-factors were calculated for all intra-residual signals, all sequential signals, all medium-range signals (medium range signals
are defined as inter-residual signals which are arising from amino acids i and j which are not further apart in the sequence than four
residues (i<j, j)i £ 4)), all long-range signals and all inter-residual signals.
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original structures. Note that for these tests decoy
set 1was used.Displayed are thePWAURR-factors
(a = )1/6) according to Equation 2, please note
that the A-list contains only assigned long-range
signals. Long-range signals are defined as inter-
residual signals which arise from amino acids i and j

that are separated by more than four residues in the
primary sequence. They were considered for
R-factor calculation since the presence of assigned
long-range signals is strongly correlated to the
correct fold of a molecule (Gronwald et al., 2000).
R-factors obtained using the three-dimensional
spectrum (upper part) compared to the results ob-
tained from 2D data (middle part) and the com-
bined values obtained from both spectra (lower
part). As it can be easily seen, these R-factors are
strongly discriminating with values ranging from
one for structures possessing rmsd values above
1 nm to values around 0.30 for the original struc-
ture. This is true for theR-factors obtained from the
2Dand 3Ddata and for the averagedR-factors. For
the highly disordered structures the R-factor
RPWAUR (Equation 2) is mostly influenced by the
signals of classU1 and is approaching a value of one,
while for a correct structure only few signals remain
unassigned and theR-factor ismostly dominated by
the difference between experimental and simulated
long-range signals of class A.

From Figures 1 and 2 it is obvious that for
small and medium rmsd values up to 0.8 nm an
almost linear relationship can be established to our
NMR R-factors. Differences between the individ-
ual R-factors of the 2D and 3D cases can be
mainly seen for the R-factors where the corre-
sponding rmsd values exceed 0.2 nm where
marked deviations from the trend-lines (solid
black lines) shown in Figures 1 and 2 exist. Trend-
lines were obtained by a fit of the data to a fourth
order polynomial. Here, more reliable results can
be obtained by increasing the available database
for the R-factor calculation by using an averaged
R-factor (lower part of Figures 1 and 2).

Next we investigated also using decoy set 1 if
the new R-factor definition given by Equation 3
(RPWFAR) where additionally the signals of the
U1-list have been assigned as defined in the mate-
rials and methods section is also sufficient to
establish a clear relationship between R-factors
and RMSD values. As a test case RalGDS-RBD
together with a 1H 2D NOESY spectrum was
used. We tested two versions of Equation 3 first
where the A-list and the U1-list contain both all
assigned signals (case 1) and second where both
lists contain only the subset of assigned long-range
signals (case 2). Figure 3 shows the results for
RalGDS-RBD employing the 1H 2D-NOESY
spectrum. As it can be clearly seen for both cases a

Table 3. Test set for the correlation between RMSD-values and

R-factors employing unrestrained molecular dynamics calcula-

tions (decoy set 1)

Structure # MD simulation

steps of 5 fs

rmsd (nm)

HPra
rmsd (nm)

RalGDS-RBD1

1 0 0.000 0.000

2 100 0.025 0.022

3 200 0.038 0.040

4 400 0.066 0.077

5 600 0.100 0.111

6 800 0.137 0.148

7 1000 0.179 0.189

8 1500 0.270 0.289

9 2000 0.370 0.385

10 2500 0.457 0.487

11 3000 0.544 0.601

12 3500 0.622 0.703

13 4000 0.698 0.805

14 5000 0.840 1.022

15 6000 0.985 1.236

16 7000 1.117 1.454

aAs reference for the rmsd calculations the final solution
structures of HPr and RalGDS-RBD were used. Rmsd values
were calculated for the Ca atoms.

Table 4. Test set for the correlation between RMSD-values and

R-factors employing reduced NOE distance restraint lists (de-

coy set 2)

Structure # Number of NOE

distance restraints

rmsd (nm)

RalGDS-RBD1

1 1511 0.000

2 1364 0.120

3 1205 0.136

4 1080 0.142

5 894 0.147

6 746 0.232

7 593 0.221

8 435 0.345

9 300 0.492

10 201 1.154

aAs reference for the rmsd calculations the final solution
structure of RalGDS-RBD were used. Rmsd values were cal-
culated for the Ca atoms.
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Figure 1. R-factors for HPr. In the upper part, the results
obtained using a 3D 15N edited NOESY-HSQC spectrum
(measured at 500 MHz) are shown. In the middle, the results
from a 2D 1H NOESY spectrum (measured at 800 MHz) are
displayed. Only signals in the range from 11.82 to 5.66 ppm in
F2 were taken for the R-factor calculation. In the lower part of
the figure, combined R-factors were calculated from the 2D and
3D data. Displayed are the PWAUR R-factors (a = )1/6)
according to Equation 2, please note that the A-list contains
only assigned long-range signals. Only peaks with a signal
probability pi>0.8 were used. The results are obtained using the
assigned long-range signals together with the remaining non-
assigned signals. Data were fitted by a 4th order polynomial.

Figure 2. R-factors for RalGDS-RBD. Increasingly disor-
dered structures for RalGDS-RBD were taken from decoy set
1. In the upper part, the results obtained using a 3D 15N edited
NOESY-HSQC spectrum (measured at 600 MHz) are shown.
In the middle, the results from a 2D 1H NOESY spectrum
(measured at 800 MHz) are displayed. Only signals in the range
from 10.00 to 6.2 ppm in F2 were taken for the R-factor
calculation. In the lower part of the figure, weighted average
R-factors were calculated from the 2D and 3D data. Displayed
are the PWAUR R-factors (a = )1/6) according to Equation
2, please note that the A-list contains only assigned long-range
signals. Only peaks with a signal probability pi>0.8 were used.
The results are obtained using the assigned long-range signals
together with the remaining non-assigned signals. Data were
fitted by a 4th order polynomial.

25



clear relationship is visible between R-factors and
rmsd values. As noted in the materials and meth-
ods section for substantially disordered structures
in both cases 1 and 2 the R-factors exceed a
maximum value of 1. This is especially true for
case 2 where a maximum R-factor of 3.9 is ob-
tained.

Employing a 2D NOESY spectrum of RalGDS
and decoy set 1 we also analyzed the R-factor
definition given by Equation 4 (RPWFASR). Here
the A-list and the U1-list contain both all assigned
signals and the Uc-list contains all simulated sig-
nals without corresponding experimental signals
and whose volumes are also above the detection
limit. The results (Figure 4) show that this
R-factor also shows a clear and almost linear
correlation between rmsd values and R-factors.
Due to the used large statistical base, all obtained
R-factors are very close to the fitted curve in
Figure 4. For RPWFASR a maximum value of 1.49
was obtained. In this context, we determined for
V
�1=6
noise c the optimal value of V

�1=6
noise c that specifies

the distance limit above which the fraction of the
number of experimental signals to the number of
simulated signals of the same distance class sub-
stantially decreases. For this purpose, a histogram
was employed using distance classes of 0.05 nm
width (Figure 5). The results show that for the last
2 distance classes from 0.55 to 0.65 nm only very
few experimental signals were found. As a conse-
quence the maximum detection limit used

throughout this contribution was set to 0.55 nm
since similar values were obtained for the 3D
spectra and the HPr test case (data not shown).
For RPWFASR the value of V

�1=6
noise c was set to a

slightly smaller value of 0.50 nm to ensure that for
a reasonable amount of the simulated signals
experimental counterparts are available. For these
tests, also decoy set 1 was used.

Figure 3. R-factors for RalGDS-RBD employing Equation 3
(RPWFAR) and a 1H 2D-NOESY spectrum. Increasingly disor-
dered structures for RalGDS-RBD were taken from decoy set
1. For this R-factor definition additionally the signals of the U1-
list have been assigned as defined in the materials and methods
section. The black triangles denote the case where the A-list and
the U1-list contain both all assigned signals and the black
squares refer to the case where both lists contain only the subset
of assigned long-range signals.

Figure 4. R-factors for RalGDS-RBD employing Equation 4
(RPWFASR) and a 1H 2D-NOESY spectrum. Increasingly
disordered structures for RalGDS-RBD were taken from decoy
set 1. For this R-factor definition, additionally the signals of the
Uc-list have been used as defined in the materials and methods
section. The A-list and the U1-list contain both all assigned
signals. The Uc-list contains all simulated signals without
corresponding experimental signal that are above the experi-
mental detection limit.

Figure 5. Histogram representation of the fraction of the
number of experimental signals to the number of simulated
signals of the same distance class for RalGDS-RBD employing
a 1H 2D-NOESY spectrum. Increasingly disordered structures
for RalGDS-RBD were taken from decoy set 1. The first 2
classes ranging from 0.15 to 0.20 nm and from 0.20 to 0.25 nm
were omitted in the histogram representation since the statis-
tical basis for these two classes was rather small. A distance
class width of 0.05 nm was used. For both simulated and
experimental signals, only signals above the diagonal and in the
range from 10.00 to 6.2 ppm in F2 were taken.
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Next, the influence of decoy generation on the
rmsd R-factor relationship was investigated. For
this purpose, a second decoy set (decoy set 2) for
RalGDS-RBD was generated were increasingly
disordered structures were obtained as described
above by randomly deleting increasing amounts of
restraints from the original NOE distance restraint
list. Figure 6 displays the PWAUR R-factors
(a = )1/6) according to Equation 2 obtained
using a 2D NOESY spectrum. As it can be seen in
Figure 6 again a linear relationship between
R-factors and rmsd values is obtained. However,
in comparison to the results obtained using decoy
set 1 (Figure 2) the slope of the line of best fit is
reduced. For the last structure possessing for the
Ca atoms a rmsd value of 1.1 nm to the original
structure an R-factor of 0.438 is obtained.

Discussion

Combination of R-factors

Our results show that the automated determina-
tion of 3D-R-factors implemented in AUREMOL
works as reliable as that implemented earlier for
2D-NOESY spectra. The obtained values do not
depend significantly on the type of spectra. This is
also true for the combination of 2D with 3D data

and (data not shown) for the combination of
different 2D spectra. The successful combination
of different NOESY data sets is an important step
to integrate all experimental data in a measure for
the agreement of experimental data with the ob-
tained structures. The use of all available, struc-
turally relevant data for a quality assessment of
structures is mandatory from first principals. The
calculation of a single R-factor from a set of dif-
ferent spectra is not trivial. We present here a
solution which at least fulfils the plausible condi-
tion that different amplitude scaling in a set of
spectra should not influence the calculation of the
averaged R-factor. However, more complicated
definitions of combined R-factors are thinkable
which for example would additionally include the
information content of the type of NMR spectrum
or the qualities of the spectra used. We are actually
exploring these possibilities; however, the solu-
tions envisaged can hardly be called R-factors in
the traditional sense.

The use of a combined R-factor promises to
better judge the quality of less well defined struc-
tures and or to give more reliable values if the
quality of the experimental spectra is suboptimal.
This can be important for the analysis of partially
flexible peptides and folding intermediates and for
the progress analysis during an iterative auto-
mated structure determination process using for
example the program AUREMOL-KNOWNOE
(Gronwald et al., 2002). Such an effect can be seen
in Figures 1 and 2 where the averaged R-factor
better discriminates between different intermediate
structures. Since the whole process of the R-factor
calculation is fully automated within AUREMOL
different structures can be compared in a fast
manner making it ideally suited for high-
throughput approaches as used in structural
genomics projects.

The use of the proper motional model

For the calculation of R-factors, the quality of the
back calculation is important. As to be expected
the calculated R-factors are sensitive to the em-
ployed motional models and that best results are
obtained when as detailed as possible motional
models are used. Therefore, for the calculation of
the R-factors one should also include all available
information describing the dynamics of the protein
of interest.

Figure 6. R-factors for RalGDS-RBD using decoy set 2.
Increasingly disordered decoys for RalGDS-RBD were ob-
tained using partial distance restraint lists. Results from a 2D
1H NOESY spectrum (measured at 800 MHz) are displayed.
Only signals in the range from 10.00 to 6.2 ppm in F2 were
taken for the R-factor calculation. In the lower part of the
figure, weighted average R-factors were calculated from the 2D
and 3D data. Displayed are the PWAUR R-factors (a = )1/6)
according to Equation 2, please note that the A-list contains
only assigned long-range signals. Only peaks with a signal
probability pi>0.8 were used. The results are obtained using the
assigned long-range signals together with the remaining non-
assigned signals. Data were linearly fitted.
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Choice of the R-factor

The R-factors obtained by Equation 2 (Figures 1
and 2) are normalized to a maximum value of 1 for
a structure that bears no similarity with the true
solution structure. However, the R-factors ob-
tained by RPWFAR (Figure 3) and RPWFASR (Fig-
ure 4) can adopt substantially larger values
depending on the size and quality of a given trial
structure making the interpretation of an obtained
R-factor value in terms of structural quality more
difficult. Using for Equation 3 all signals of the
A-list and the U1-list provides a larger statistical
basis for the calculation of the R-factors while the
R-factors obtained using only the long-range sig-
nals are more sensitive to structural changes. One
important prerequisite when using RPWFAR is a
nearly complete sequential resonance line assign-
ment. Otherwise signals of the U1-list might be
wrongly assigned in case that an experimental
signal is explained by more than one proton pair
due to chemical shift ambiguity and the resonance
line assignments of the proton pair corresponding
to the shortest structural distance are missing. In
this case, the given experimental signal will be as-
signed to the proton pair with the next shortest
distance and matching chemical shifts. As a con-
sequence drastically incorrect distances might be
used for R-factor calculations which in turn will
lead to increased R-factor values. Therefore,
RPWFAR should only be used with care and
RPWAUR is more general applicable. The same is
true for RPWFASR (Equation 4) that is basically an
extension of Equation 3 to take also simulated
signals without corresponding experimental sig-
nals into account. A comparison of Figures 3 and
4 shows that in general the obtained relationship
between R-factors and rmsd values using RPWFASR

(Equation 4) and RPWFAR (Equation 3) (case 2) is
similar. However, RPWFAR (Equation 3) (case 2) is
more sensitive to structural changes with R-factors
ranging from 0.81 to 3.88 than RPWFASR with
values ranging from 0.27 to 1.49 (Equation 4).
This is mainly due to the fact that for the more
disordered structures also fewer signals are simu-
lated that are above the experimental detection
level. Therefore, the influence of the simulated
signals without corresponding experimental sig-
nals on the resulting R-factors is relatively small.
Also it is obvious from Figures 1–4 that the
R-factors obtained for the final solution structures

adopt values substantially different from 0 as ex-
pected in an ideal case. This discrepancy can be
attributed to factors such as a limited precision of
the NOE back-calculation due to unknown order
parameters for the side-chain atoms, incorrect
experimental volumes due to factors such as
baseline rolls, the presence of artifacts, and the fact
that the final solution structures that we have
determined might be still away from the true
structure present in solution. It can although mean
that the optimization procedures commonly used
to calculate the structures do not find the optimal
structure or that a single solution is not sufficient
to explain the data.

As a consequence the R-factors in their present
definitions allow comparing different structures
with each other and allows determining which of
these structures explains the experimental data
best. In general, one can say that the different
R-factors defined by Equations 2, 3, and 4 allow a
sensible discrimination between different struc-
tures. As explained above RPWAFR (Equation 3)
and RPWAFSR (Equation 4) might be sensitive to
the completeness of the resonance line assignment
where in RPWAUR (Equation 2) the influence of
missing resonance line assignments is limited by
the application of the Vnoise term.

Use of R-factors to distinguish between different
structural models

As soon as the general resonance line assignment is
available our fully automated NOE cross peak
assignment in combination with the also auto-
mated R-factor calculation allows the comparison
of a large number of structures in a short amount
of time. One obvious application is the direct
comparison of structures obtained from a variety
of sources, e.g. NMR, X-ray, and or homology
modeling. In technical terms, the R-factor calcu-
lation described here is an extension to our previ-
ous work (Gronwald et al., 2000) and has several
new aspects compared to already published work
by us, the calculation of R-factors from three-
dimensional NOESY-HSQC-spectra, a proper
handling of signal superposition, and the use of
multiple spectra to calculate weighted average
R-factors. Using three-dimensional spectra it is
now possible to calculate automatically reliable
R-factors for larger proteins. Although, funda-
mentally the similar information is also contained
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in the 2D-spectra of large proteins, problems may
arise by peak superposition. Especially, the prob-
ability is higher that non-recognized artifact
peaks are misinterpreted or that overlapping of
resonances includes incompletely assigned peaks.

R-factors, rmsd values and the expansion of the
structure

The use of R-factors to assess the quality of a
structure after or during the structure calculation
has been recognized by several authors in the past
see for example the paper by Gonzalez et al.
(1991). Huang et al. (2005) have related their RPF
and DP scores with rmsd differences between ref-
erence and intentionally distorted structures. Also
Hubner et al. (2004) have shown a linear rela-
tionship between classical rmsd values between the
atomic coordinate vectors and the rmsd values
between corresponding distances in the set struc-
tures (dRMS values), that is the dRMS measures
the agreement of inter-atomic distances in a ref-
erence structure and a trial structure. Therefore,
the dRMS is related to NMR R-factors. However,
to our knowledge an almost linear relationship
between real NMR R-factors and rmsd values for
small rmsd-values has not been noticed before.
This is conceptionally a different measure since it
compares essentially experimental distances with
distances in calculated structures. At the moment,
it is not really clear how this dependence can be
further used and the apparent linear behavior of
the R factor is not understood yet, considerable
additional work is required which is, however,
beyond the scope of this contribution.

A comparison of the R-factors obtained using
different decoy sets as shown by a comparison of
Figures 2 and 6 for RalGDS-RBD demonstrates
that for both cases a nearly linear relationship
between R-factors employing the R-factor
RPWAUR (Equation 2) and rmsd values is obtained.
However, in comparison to the results obtained
using decoy set 1 (Figure 2) the slope of the line of
best fit is reduced when decoy set 2 is used. For the
last structure in decoy set 2 possessing for the Ca
atoms a rmsd value of 1.1 nm to the original
structure an R-factor of 0.438 is obtained. A closer
analysis of this last structure of decoy set 2 shows
that the structure almost retains the compactness
of the original structure with a radius of gyration
of 1.40 nm (original structure 1.22 nm) but all

secondary structure elements are completely dis-
ordered. In contrast, a corresponding structure
from decoy set 1 that shows a similar rmsd value
of 1.24 nm to the original structure possess an
R-factor of 0.95. However, in comparison this
structure is much more expanded as reflected by a
radius of gyration of 2.32 nm. Therefore, one can
conclude that the R-factor is related in a linear
fashion to both the measured rmsd values and the
expansion of the structure. In summary, one can
say that the NMR R-factor is a sensitive measure
to the quality of a structure that reflects the true
closeness to the experimental data, more than
rmsd values or radii of gyration, which are not
necessarily related to each other. It should be no-
ted that similar linear relationships with a reduced
slope of the line of best fit were found for decoy set
2 (data not shown) when RPWFAR (Equation 3)
and RPWFASR (Equation 4) were applied.

Conclusion

Besides R-factors other measures for the agree-
ment of the experimental data were proposed, e.g.
the RPF-value defined by Huang et al. (2005).
None of them is ideal in all respects. However,
R-factors are suitable measures for the quality of
structure calculation. Compared to a simple NOE
violation analysis from user prepared and filtered
NOE lists R-factors as defined in the following are
probably more objective. There are several points
which appear to be important to the use of NMR
R-factors in the quality assessment of NMR
structures and are implemented in AUREMOL:
(1) the calculation of the NMR factor should have
been automated as much as possible and thus not
depend on the user, (2) all available, structurally
relevant NMR data have to be used for the cal-
culation of the R-factor that is usually a set of
NMR spectra has to be taken, (3) artifacts have to
be recognized and dismissed as it is done by a
Bayesian analysis in AUREMOL, (4) unassigned
true signals have to be taken in to account, (5) the
simulation of the NOESY spectra has to be as
realistic as possible including internal mobility
effects and saturation effects, (6) superposition
effects have to be considered properly, and (7)
the choice of the R-factor should be adapted to
the problem that is for the assessment of the
fold accuracy it is important to consider the
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non-assigned signals. In addition, we could show
an almost linear relationship between R-factors
and rmsd values and the compactness of the
structure that clearly demonstrates the relevance
of NMR R-factors for the quality assessment of
protein solution structures.
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